11 November 2009

Circuit Switching dan Packet Switching

Posting kali ini akan di bahas mengenai paket-paket yang menghubungkan antar jaringan yaitu :
  1. Frame Relay
  2. X.25 Protocol
  3. Frequency Division Multiplexing
  4. Time Division Multiplexing
  5. Code Division Multiplexing
Frame Relay

Frame relay merupakan protocol WAN yang mempunyai performance tinggi yang bisa memberikan koneksi jaringan WAN sampai 2,048 Mbps (dan bahkan bisa lebih tinggi) ke berbagai belahan dunia. Frame relay menggunakan circuit virtual untuk koneksi site-2 dan memberikan lebar pipa bandwidth berskala yang bisa dijamin (dengan menggunakan apa yang disebut sebagai CIR- committed information rate). Frame relay begitu popular karena penawaran bandwidth yan berskala melalui jalur digital. Dengan menggunakan konfigurasi standard frame relay akan merupakan cara yang sederhana untuk meminimalkan masalah jaringan-2 frame relay.

Frame relay didesign untuk transmisi digital melalui medium yang sudah handal, yang pada umumnya adalah fiber optic, bandingkan dengan jaringan yang menggunakan X.25 yang pada awalnya didesign untuk jaringan transmisi analog melalui medium yang dianggap tidak handal seperti standard line telpon.

Berikut ini adalah fitur utama dari frame relay:
  • Frame relay memberikan deteksi error tapi tidak memberikan recovery error.
  • Frame relay memberikan transfer data sampai 1.54Mbs
  • Frame relay mempunyai ukuran paket yang bervariable (disebut frame)
  • Frame relay bisa dipakai sebagai koneksi backbone kepada jaringan LAN
  • Frame relay bisa dimplementasikan melalui berbagai macam koneksi sambungan (56K, T1, T3)
  • Frame relay beroperasi pada layer physical dan layer Data link pada model OSI
Frame pada Frame Relay akan dikirimkan ke tujuannya dengan menggunakan sirkit virtual (jalur logikal dalam jaringan). Sirkit Virtual ini bisa berupa Sirkit Virtual Permanen (Permanent Virtual Circuit / PVC), atau Sirkit Virtual Switch (Switched Virtual Circuit / SVC).

Permanent Virtual Circuit (PVC)
PVC adalah koneksi yang terbentuk untuk menghubungkan 2 peralatan secara terus menerus tanpa memperhitungkan apakah sedang ada komunikasi data yang terjadi di dalam sirkit tersebut. PVC tidak memerlukan proses pembangunan panggilan seperti pada SVC dan memiliki 2 status kerja:
  1. Data Transfer, pengiriman data sedang terjadi dalam sirkit
  2. Idle, koneksi antar titik masih aktif tapi tidak ada data yang dikirimkan dalam sirkit
Switched Virtual Circuit (SVC)
SVC adalah koneksi sementara yang terbentuk hanya pada kondisi dimana pengiriman data berlangsung. Status-status dalam koneksi ini adalah:
  1. Call Setup, hubungan antar perangkat sedang dibangun
  2. Data Transfer, data dikirimkan antar perangkat dalam sirkit virtual yang telah dibangun
  3. Idle, ada koneksi aktif yang telah terbentuk, tetapi tidak ada data yang lewat di dalamnya
  4. Call Termination, pemutusan hubungan antar perangkat, terjadi saat waktu idle melebihi patokan yang ditentukan
X.25 Protocol

adalah standar jaringan packet switching yang disetujui pada 1976 oleh CCITT sekarang ITU). Standar ini mendefinisikan layers 1, 2, and 3 Model Referensi OSI. Pada 1970 an ada banyak jaringan telekomunikasi publik yang dimiliki oleh perusahaan, organisasi dan pemerintahan yang saling berbeda satu sama lain sehingga diperlukan protocol yang lebih umum untuk menggabungkan semua standar industri tersebut. Pada 1976 X.25 direkomendasikan sebagai protocol yang dimaksud oleh The International Consultative Committee for Telegraphy and Telephony (CCITT) sekarang International Telecommunication Union (ITU) sejak 1993.
X.25 adalah packet switched data network protocol yang mendefinisikan secara internasional bagaimana cara melakukan data exchange dan information control antara user device (host), disebut Data Terminal Equipment (DTE) dan network node, disebut Data Circuit Terminating Equipment (DCE). X.25 termasuk Connection Oriented service yang memastikan paket ditransmisikan berurutan.

X.25 mengacu pada tiga layer pertama Open Systems Interconnection(OSI) dalam arsitektur 7 Layer yang ditetapkan oleh International Standard Organization (ISO).
  1. Physical Level adalah interface secara fisik. Sesuai dengan Physical Layer pada OSI model
  2. The Link Level bertanggung jawab terhadap komunikasi antara DTE dan DCE. Sesuai dengan Data Link Layer pada OSI model
  3. The Packet Level mendeskripsikan data transfer protocol pada packet switched network. Sesuai dengan Network Layer pada OSI model.
X.25 disetujui pada 1976 dan direvisi pada 1977, 1980, 1984, 1988 and 1992. Saat ini digunakan sebagai interfaces data communication networks terluas di seluruh dunia.
Sebagian besar Wide Area Network (WAN) protocol modern, termasuk TCP/IP, X.25 dan Frame Relay, berbasis teknologi packet switching. Sedangkan layanan telepon umumnya berbasis jaringan teknologi circuit switching. Dan packet switching adalah protocol yang mengatur data dibagi menjadi sejumlah paket sebelum dikirimkan. Setiap paket akan dikirimkan terpisah dan dapat melalui saluran (routing) yang berbeda. Setelah semua paket dapat diterima oleh host tujuan, protocol menyusun kembali sehingga bisa ditampilkan utuh seperti semula.

Umumnya dedicated line dialokasikan untuk transmisi antara dua pihak. Circuit switching ideal untuk kondisi dimana data harus dikirim secepatnya dan harus sampai dengan urutan yang sama. Misalnya untuk real time data (live audio dan video). Packet switching lebih efisien untuk jenis data yang dapat mentoleransi transmisi yang tertunda dan terpisah (tidak bersamaan) seperti misalnya e-mail dan Web.

Teknologi yang lebih baru, ATM, mengkombinasikan keduanya. Mampu memberikan garansi akurasi seperti jaringan circuit switched dan efisiensi dari jaringan packet switching.
dapat di tarik kesimpulang bahwa X.25 adalah protocol telekomunikasi jaringan packet switched yang sampai saat ini masih sangat banyak dipergunakan di seluruh dunia. Salah satu aplikasinya adalah Frame Relay. Jaringan ini merupakan satu protocol utama akses Internet di seluruh dunia.

Frequency Division Multiplexing

FDM yaitu pemakaian secara bersama kabel yang mempunyai bandwidth yang tinggi terhadap beberapa frekuensi (setiap channel akan menggunakan frekuensi yang berbeda). Contoh metoda multiplexer ini dapat dilihat pada kabel coaxial TV, dimana beberapa channel TV terdapat beberapa chanel, dan kita hanya perlu tunner (pengatur channel) untuk gelombang yang dikehendaki. Pada teknik FDM, tidak perlu ada MODEM karena multiplexer juga bertindak sebagai modem (membuat permodulatan terhadap data digital). Kelemahan Modem disatukan dengan multiplexer adalah sulitnya meng-upgrade ke komponen yang lebih maju dan mempunyai kecepatan yang lebih tinggi (seperti teknik permodulatan modem yang begitu cepat meningkat). Kelemahannya adalah jika ada channel (terminal) yang tidak menghantar data, frekuensi yang dikhususkan untuk membawa data pada channel tersebut tidak tergunakan dan ini merugikandan juga harganya agak mahal dari segi pemakaian (terutama dibandingkan dengan TDM) kerana setiap channel harus disediakan frekuensinya. Kelemahan lain adalah kerana bandwidth jalur atau media yang dipakai bersama-sama tidak dapat digunakan sepenuhnya, kerana sebagian dari frekuensi terpaksa digunakan untuk memisahkan antara frekuensi channelchannel yang ada. Frekuensi pemisah ini dipanggil guardband.

Time Division Multiplexing

Secara umum TDM menerapkan prinsip pemnggiliran waktu pemakaian saluran transmisi dengan mengalokasikan satu slot waktu (time slot) bagi setiap pemakai saluran (user). TDM yaitu Terminal atau channel pemakaian bersama-sama kabel yang cepat dengan setiap channel membutuhkan waktu tertentu secara bergiliran (round-robin time-slicing). Biasanya waktu tersebut cukup digunakan untuk menghantar satu bit (kadang-kadang dipanggil bit interleaving) dari setiap channel secara bergiliran atau cukup untuk menghantar satu karakter (kadang-kadang dipanggil character interleaving atau byte interleaving). Menggunakan metoda character interleaving, multiplexer akan mengambil satu karakter (jajaran bitnya) dari setiap channel secara bergiliran dan meletakkan pada kabel yang dipakai bersama-sama sehingga sampai ke ujung multiplexer untuk dipisahkan kembali melalui port masing-masing.

Menggunakan metoda bit interleaving, multiplexer akan mengambil satu bit dari setiap channel secara bergiliran dan meletakkan pada kabel yang dipakai sehingga sampai ke ujung multiplexer untuk dipisahkan kembali melalui port masing-masing. Jika ada channel yang tidak ada data untuk dihantar, TDM tetap menggunakan waktu untuk channel yang ada (tidak ada data yang dihantar), ini merugikan penggunaan kabel secara maksimun. Kelebihanya adalah karena teknik ini tidak memerlukan guardband jadi bandwidth dapat digunakan sepenuhnya dan perlaksanaan teknik ini tidak sekompleks teknik FDM. Teknik TDM terdiri atas :

Synchronous TDM

Time division multiplexing dimungkinkan apabila data rate yang dapat dicapai oleh media transmisi lebih besar daripada data rate sinyal digital yang akan dikirim.
  • Pada gambar berikut, sejumlah sinyal digital [mi(t); i=1,…n] dimultiplex pada media transmisi yang sama. Data yang datang dari tiap sumber mula-mula dimasukkan ke buffer.
  • Buffer di-scan secara sekuensial untuk membentuk sinyal digital gabungan mc(t). Operasi scan harus berlangsung cukup cepat agar tiap buffer dapat berada dalam keadaan kosong sebelum data berikutnya masuk.
  • Jadi, besarnya laju data mc(t) harus lebih dari atau sama dengan penjumlahan laju data masing-masing sumber (mi(t)). Sinyal digital mc(t) dapat dikirim langsung, atau dilewatkan melalui modem untuk membentuk sinyal analog.


Asynchronous TDM

Untuk mengoptimalkan penggunaan saluran dengan cara menghindari adanya slot waktu yang kosong akibat tidak adanya data ( atau tidak aktif-nya pengguna) pada saat sampling setiap input line, maka pada Asynchronous TDM proses sampling hanya dilakukan untuk input line yang aktif saja. Konsekuensi dari hal tersebut adalah perlunya menambahkan informasi kepemilikan data pada setiap slot waktu berupa identitas pengguna atau identitas input line yang bersangkutan. Penambahan informasi pada setiap slot waktu yang dikirim merupakan overhead pada Asynchronous TDM.

Code Division Multiplexing

Code Division Multiplexing (CDM) dirancang untuk menanggulangi kelemahankelemahan yang dimiliki oleh teknik multiplexing sebelumnya, yakni TDM dan FDM.. Contoh aplikasinya pada saat ini adalah jaringan komunikasi seluler CDMA (Flexi) Prinsip kerja dari CDM adalah sebagai berikut :
  1. Kepada setiap entitas pengguna diberikan suatu kode unik (dengan panjang 64 bit) yang disebut chip spreading code.
  2. Untuk pengiriman bit ‘1’, digunakan representasi kode (chip spreading code) tersebut.
  3. Sedangkan untuk pengiriman bit ‘0’, yang digunakan adalah inverse dari kode tersebut.
  4. Pada saluran transmisi, kode-kode unik yang dikirim oleh sejumlah pengguna akan ditransmisikan dalam bentuk hasil penjumlahan (sum) dari kode-kode tersebut.
  5. Di sisi penerima, sinyal hasil penjumlahan kode-kode tersebut akan dikalikan dengan kode unik dari si pengirim (chip spreading code) untuk diinterpretasikan.
selanjutnya :
- jika jumlah hasil perkalian mendekati nilai +64 berarti bit ‘1’,
- jika jumlahnya mendekati –64 dinyatakan sebagai bit ‘0’.

sumber :
[1] http://brahm.staff.gunadarma.ac.id/Downloads/files/8932/MULTIPLEXING.doc
[2] http://mudji.net/press/?p=111

Tidak ada komentar: